当前位置:首页 > 热点热搜 > 正文

什么是大数据( 什么是大数据可视化 )

本篇文章给大家谈谈什么是大数据,以及什么是大数据可视化对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

大数据是什么?

什么是大数据?

随着云时代的来临,大数据(big data)也吸引了越来越多的关注。那么,大数据究竟是什么呢?它的定义、结构、特点是什么呢?它又能应用在哪些方面呢?相信通过这篇文章你可以对大数据有一个全新全面的认识。

一、定义

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

二、特点

国际商业机器公司(简称:IBM)提出了大数据的5V特点,即:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。

三、结构

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

四、应用

1.洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2.google流感趋势(Google Flu Trends)利用搜关键词预测禽流感的散布。

3..统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4..麻省理工学院利用手机定位数据和交通数据建立城市规划。

5.梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6.医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

通过以上几个方面说明:现在已经迎来了大数据时代。因此大数据开发成为各企业非常看重的一部分,对这方面的人才需求也逐渐增多。

大数据指的是什么

大数据属于计算机科学学科领域,指的是通过分析和挖掘全量的非抽样的数据辅助决策,是近年来一种新兴技术,在各行各业中都有着非常广泛的应用价值,下面我就带领大家详细盘点一下。

什么是大数据技术

大数据技术指的是无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

大数据技术的应用前景

一是机器学习、人工智能继续成为大数据智能分析的核心技术,大数据预测和决策支持仍是主要应用。在学术上,深度分析继续扮演技术主角,推动整个大数据智能的应用。通过像神经网络模型的深度学习,让计算机自动学习产生特征的方法,并将特征学习融入建立模型的过程中,增加设计特征的完备性。深度学习将在图像分类、语音识别、问答系统等应用取得重大突破,并有望得到成功商业应用。

二是数据科学带动多学科融合。随着社会的数字化程度逐步加深,更为宽泛、更为包容大数据的边界不断完善,使得越来越多的学科在数据层面趋于一致,为类比科学研究创造了条件。“数据科学”的基础研究与成果将源源不断地注入技术研究和应用范畴中。

三是开源是主流技术,公测促良好研发生态。大数据的处理模式更加多样化,Hadoop不再成为构建大数据平台的唯一选择。随着开源项目Spark不断被大规模应用,正成为大数据领域最大的开源社区。开源系统将成为大数据领域的主流技术和系统选择,并将引领着大数据生态系统的发展。各类大数据应用公测将促进大数据技术取得突破性进展。

四是基于知识图谱的大数据应用成为热门应用场景。近年来,大数据成为大众媒体的热词,大众需要可视化的大数据,背后是基于知识图谱的大数据应用。可视化是通过把复杂的数据转化为可以交互的图形,帮助用户更好地理解分析数据对象,发现、洞察其内在规律。让对信息技术不熟悉的普通民众和非技术专业的常规决策者也能够更好地理解大数据及其分析的效果和价值,进而从国计、民生两方面都充分发挥大数据的价值。

什么是大数据的概念?

1980年,阿尔文托夫勒提出。

1980年,美国著名未来学家阿尔文托夫勒(Alvin Toffler)最早在《第三次浪潮》一书中提出了大数据(BigData)的概念,并将其赞颂为第三次浪潮的华彩乐章。直到现在,大数据在政府决策部门、行业企业、研究机构等得到了广泛的应用,并实际创造了价值。

相关介绍:

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

什么是大数据

大数据又称巨量数据、海量数据,是由数量巨大、结构复杂、类型众多的数据构成的数据集合。基于云计算的数据处理与应用模式,通过数据的集成共享,交叉复用形成的智力资源和知识服务能力。

“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。换言之,大数据就是在浩如烟海的信息中,利用数据分析的技术,对冗杂无序的数据进行分析和整理,并迅速筛选出有价值的信息。

大数据的基本特征

一是数据体量巨大。百度资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。

二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。

三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。

四是价值密度低。以视频为例,一小时的视频,在不间断的监控过程中,可能有用的数据仅仅只有一两秒。

关于什么是大数据和什么是大数据可视化的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

发表评论