当前位置:首页 > 热点热搜 > 正文

方差是什么_方差是什么函数

今天给各位分享方差是什么的知识,其中也会对方差是什么函数进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

什么是方差?

方差:一组数据中各个数据与平均数的差的平方的和的平均数。

平均数为:(3+4+5)/3=4。

方差为:1/3*[(3-4)^2+(4-4)^2+(5-4)^2]=1/3*(1+0+1)=2/3。

正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

解:根据上节例2给出的分布律,计算得到工人乙废品数少,波动也小,稳定性好。

扩展资料:

性质:

1、设C为常数,则D(C) = 0(常数无波动);

2、D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)。

3、若X 、Y 相互独立,则证:记则前面两项恰为 D(X)和D(Y),第三项展开后为当X、Y 相互独立时,故第三项为零。

参考资料来源:百度百科-方差公式

什么叫方差?

1,数学期望:公式离散型随机变量X的取值为  ,  为X对应取值的概率,可理解为数据  出现的频率  ,则:

2,方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。 [5]  在实际计算中,我们用以下公式计算方差。方差是各个数据与平均数之差的平方的和的平均数,即 :,其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s^2就表示方差。

扩展资料:

在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。

需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。

大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。

参考资料:百度百科-方差 百度百科-数学期望

方差是什么

方差是衡量源数据和期望值相差的度量值。统计中的方差是每个样本值与全体样本值的平均数之差的平方值的平均数。

方差的含义

方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

方差的公式

1.若x1,x2....xn 的平均数为m

其方差是:S^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]

标准差:S=√{1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]}

2.若x1,x2....xn 其方差是:S²

则kx1,kx2.....kxn的方差为:k²S²

3.若x1,x2....xn 其方差是:S²

则x1+a,x2+a,x3+a....xn+a的方差为:S²(没有改变)

(k1,a是不为零的常数)

4.若x1,x2....xn 其方差是:S²

则kx1+a,kx2+a,kx3+a....kxn+a的方差为:k²S²

标准差的含义

在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。

方差是什么的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于方差是什么函数、方差是什么的信息别忘了在本站进行查找喔。

发表评论